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Abstract
We investigate spin-dependent transport in multiterminal mesoscopic cavities with spin–orbit
coupling. Focusing on a three-terminal set-up we show how injecting a pure spin current or a
polarized current from one terminal generates additional charge current and/or voltage across
the two output terminals. When the injected current is a pure spin current, a single measurement
allows us to extract the spin conductance of the cavity. The situation is more complicated for a
polarized injected current, and we show in this case how two purely electrical measurements on
the output currents give the amount of current that is solely due to spin–orbit interaction. This
allows us to extract the spin conductance of the device in this case as well. We use random
matrix theory to show that the spin conductance of chaotic ballistic cavities fluctuates
universally about zero mesoscopic average and describe experimental implementations of
mesoscopic spin to charge current converters.

Many recent theoretical, experimental and numerical investi-
gations have explored possibilities to generate spin currents
and accumulations in spin–orbit coupled diffusive [1–14] and
ballistic [15–18] systems. The main focus of this field of
spin–orbitronics is on purely electrostatic generation of spin
currents via application of charge currents and/or voltage bi-
ases at appropriate lead contacts to the device. The amount
of spin current generated by a given bias defines a spin con-
ductance G(s) characterizing the spin generation efficiency of
the device. Although G(s) is theoretically convenient, no re-
alistic set-up to experimentally probe it has been proposed to
date. Such a set-up is highly desirable for ballistic mesoscopic
cavities, which typically feature relatively high spin conduc-
tances [16, 18]. This property is, however, not sufficient to
make them good candidate components for low-power spin-
tronic devices because of the relatively large mesoscopic fluc-
tuations exhibited by their spin conductance [16]. Originat-
ing from the phase coherence of spin transport, these fluctu-
ations are beyond the existing measurement proposals which
are based on theories describing ensemble averaged diffusive
transport of spins, assuming locally well-defined spin accumu-
lations [19–21]. In this paper, we propose to use spin–orbit
coupled ballistic mesoscopic cavities as spin to charge current
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University, Tuzla 34956, Istanbul, Turkey.

converters to experimentally analyze spin currents and spin ac-
cumulations in meso- and nanoscopic devices. We show how
the spin conductance of such cavities can be directly measured
from the amount of charge current they generate out of conven-
tionally injected spin currents.

For simplicity, we choose the spin to charge current
converter to be an open three-terminal quantum dot with spin–
orbit coupling—this is sketched in figure 1(a)—though our
discussion is straightforwardly generalized to multiterminal
cavities with any number of leads greater than two. The
spin accumulation µ(s) (the components give the difference
in chemical potential of different spin species along the
corresponding spin direction) in a bulk electron reservoir
generates a spin current I (s)

1 injected into the dot from terminal
1 [14]. Spin–orbit coupling inside the dot acts on the pure
spin part of this current in a manner similar to the inverse spin
Hall effect [13]—it converts it into either a transverse charge
current or a voltage difference between lead 2 and lead 3.
This conversion differs, however, from the inverse spin Hall
effect in that it is fully coherent and it couples different spin
polarization. Measuring this charge current/voltage allows us
to extract the spin conductance of the cavity. We consider
two classes of measurements, defining two different spin
conductances G(s1) and G(s2). In the first one, the voltage on
terminal 1 is set such that I (s)

1 is a pure spin current, without
charge component, I1 = 0. Then I2 = −I3 are entirely due
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Figure 1. (a) Three-terminal ballistic quantum dot as a mesoscopic spin current to charge current converter. The output electrodes 2 and 3 are
at the same fixed potential V = 0, while the input electrode 1 is at potential V1. Spins are injected into the dot from electrode 1. We argue that
spin–orbit coupling can convert this spin current into a charge current across electrodes 2 and 3 (dashed blue arrow). We discuss three possible
mechanisms for generating this spin current from a spin accumulation generated by (b) a ferromagnet, (c) polarized photons and (d) a charge
current in the spin–orbit coupled reservoir 1. For these three mechanisms, it is straightforward to invert the spin accumulation, allowing us to
extract the spin conductance of the cavity from two measurements of the output charge current/voltage at opposite spin accumulations.

(This figure is in colour only in the electronic version)

to the conversion of I (s)
1 into a charge current and the spin

conductance of the cavity is defined as G(s2)
j ≡ I j/|µ(s)|,

j = 2, 3. In the second scenario, I (s)
1 is a polarized current,

accompanied by a net injection of charges into the dot, I1 �= 0.
To demonstrate the existence of a spin component in I (s)

1 ,
one thus needs to isolate that part of I2 or I3 that originates
exclusively from the spin–orbit conversion of I (s)

1 . This is
achieved by performing two measurements at reversed spin
accumulation in 1, µ(s) → −µ(s), but fixed electrochemical
potentials. As we show below, the difference in the two
measured currents is solely due to the spin–orbit conversion
of I (s). This defines the spin conductance of the cavity as
G(s1)

j ≡ [I j (µ
(s)) − I j (−µ(s))]/2|µ(s)|, j = 2, 3. Our notation

for the spin conductance G(s1,s2)
j is that the upper index refers

to the type of measurement, while the lower index refers to
the exit lead where the current is measured. In both instances,
we show that G(s1,s2)

j exhibits mesoscopic fluctuations about
zero average, under variation of the shape of the cavity or
homogeneous changes in electrochemical potentials in all
terminals.

There are various ways to generate spin accumulations and
currents, most notably via spin injection from ferromagnetic
components [22] or optical orientation [23], or via magneto-
electric effects [24–27]. Figure 1(b) illustrates the first method,
where a ferromagnetic lead, F, and a nonmagnetic lead, NM,
form an F/2DEG(2DHG)/NM junction with a two-dimensional
electron (hole) reservoir. Passing a current between F and
NM injects spins into the reservoir. In figure 1(c) we sketch
how spin polarization is generated via optical pumping with
circularly polarized photons. Figure 1(d) illustrates how a
steady-state electronic current flowing in a two-dimensional
k-linear spin–orbit coupled system generates a bulk spin

accumulation [24]. In all cases, the spin accumulation,
generated a distance shorter than the spin relaxation length but
longer than the mean free path away from the point contact,
diffuses to and flows through the ballistic cavity. Then, the
ballistic processes connecting the spin injector part of the
circuit with the cavity can be ignored and the reservoir can be
viewed as having a well-defined spin accumulation µ(s).

We formalize our theory. An open quantum dot is coupled
to three bulk reservoirs via ideal point contacts, each carrying
Ni open channels (i = 1, 2, 3). We assume that spin–orbit
coupling exists only inside the dot. Given that the dot and
the reservoirs are made of the same material, this is justified
when (i) the openings to the electrodes are small enough that
the spin–orbit time is shorter than the mean dwell time spent
by an electron in the dot and (ii) the accumulations in the
reservoirs are generated a distant shorter than the spin–orbit
length away from the dot. We follow the scattering approach
to transport and start from the linear relation between currents
and chemical potentials [28]:

I (α)
i = e

h

∑

β

(2Ni δαβ − T (αβ)

ii )μ
(β)

i − e

h

∑

j �=i,β

T (αβ)

i j μ
(β)

j . (1)

Here, μ
(0)
i = eVi (Vi is the voltage applied to terminal i )

and μ
(β)

i are the components of the spin accumulation vector
µ

(s)
i , giving the difference in chemical potential between the

two spin species along the corresponding axis, i.e. μ
(z)
i =

μ
(↑)

i − μ
(↓)

i , while I (0)
i ≡ Ii and I (α)

i are the charge current
and the components of the spin current vector, all evaluated
in terminal i . We introduced the spin-dependent transmission
probabilities

T (αβ)

i j =
∑

m∈i,n∈ j

Tr[t†
mnσ

(α)tmnσ
(β)], (2)
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where σ (α), α = 0, x, y, z are Pauli matrices (σ (0) is the
identity matrix), the trace is taken over the spin degree
of freedom and tmn is a 2 × 2 matrix of spin-dependent
transmission amplitudes from channel n in lead j to channel
m in lead i . In [16], only transmission probabilities T (α0)

i j were
considered, because the reservoirs had no spin accumulation,
and consequently spin currents were determined by a single
polarization direction.

We need to determine the chemical potentials. First,
reservoir 1 is kept at a fixed voltage V1 and spin accumulation
µ

(s)
1 ≡ µ(s). Second, we set the electrochemical potentials to

zero in reservoirs 2 and 3. Third, because the leads are ideally
connected to the dot, and because reservoirs 2 and 3 see no
source of spins other than the one injected from the cavity, we
also set the spin accumulations of reservoirs 2 and 3 to zero.
Under these conditions, the components of I (s)

1 are

I (α)
1 = e

h

∑

β

(2N1δαβ − T (αβ)

11 )μ
(β)

1 . (3)

Unless very specific conditions are met, I (s)
1 is finite. The

charge currents in lead j = 2, 3 are

I j = −e2

h
T (00)

j1 V1 − e

h

∑

β �=0

T (0β)

j1 μ
(β)

1 . (4)

The first contribution to I j is the well-known nonlocal charge
conductance of the cavity. We are mostly interested in the
second contribution which corresponds to the conversion of the
spin accumulation to charge current. In order to extract the spin
conductance of the cavity from the current measurement, we
isolate this second contribution by switching the polarization
direction m of the spin accumulation.

This can be achieved, for example, for ferromagnetic
injection by temporarily applying an external magnetic field in
the appropriate direction. Within linear response the only effect
of doing this is to switch the direction of the spin accumulation
in reservoir 1, µ(s) = μ(s)m → −µ(s), without changing its
voltage bias, V1 → V1. The spin conductance of the cavity:

G(s1)
j = (

I j (m) − I j (−m)
)
/2μ(s) = − e

h

∑

β �=0

T (0β)

j1 m(β) (5)

is then directly extracted from the difference in the charge
current in lead j = 2, 3 between these two measurements.
This first definition of the spin conductance is appropriate in
the linear response regime only.

When the spin injection part of the circuit is not operating
within linear response, inverting the magnetization direction
results in different magnitudes of the chemical potentials. In
this regime we instead apply a charge voltage bias on lead 1
such that the current through it vanishes, I1 = 0. Then the
pure spin current that flows through lead 1 generates a charge
current flowing from lead 2 to lead 3 giving a spin conductance

G(s2)
j = − e

h

∑

β �=0

(
T (00)

j1 T (0β)

11

2N1 − T (00)
11

+ T (0β)

j1

)
m(β). (6)

It is remarkable that, when N1 = 1, both definitions of the spin
conductance are equal and one has G(s1)

2 = G(s2)

2 = −G(s1)

3

= −G(s2)

3 , because then time reversal symmetry imposes

T (0β)

11 = 0, ∀β �= 0. Equations (5) and (6) are general and
do not rely on any assumption on the charge/spin dynamics in
the cavity.

From now on we focus on the experimentally relevant
case of a coherent quantum dot with chaotic ballistic electron
dynamics. Accordingly, we use random matrix theory (RMT)
to calculate the average and fluctuations of I2,3 [29]. RMT
replaces the system’s scattering matrix S—whose elements are
given by the transmission amplitudes tmn , as well as reflection
amplitudes—by a random unitary matrix. Our interest resides
on systems with time reversal symmetry (absence of magnetic
field) and totally broken spin rotational symmetry (strong spin–
orbit coupling), as in the experiments of [30, 31]. In this
case S is an element of the circular symplectic ensemble
(CSE). Following [16], we rewrite the generalized transmission
probabilities T (αβ)

i j as a trace over S:

T (αβ)

i j = Tr[Q(α)
i SQ(β)

j S†],

[Q(α)
i ]mμ,nν =

{
δmnσ

(α)
μν ,

∑i−1
j=1 N j < m �

∑i
j=1 N j ,

0, otherwise.
(7)

Here, m and n are channel indices, while μ and ν are spin
indices. The trace is taken over both sets of indices.

Averages, variances and covariances of the generalized
transmission probabilities, equation (7), over the CSE can
be calculated using the method of [29]. Experimentally,
these quantities correspond to an ensemble of measurements
on differently shaped quantum dots at different global
electrochemical potentials. The RMT averaged transmission
probabilities are

〈T (αβ)

i j 〉 = 2δαβ

NT − 1/2

[
Ni N j δα0 − (δα0 − 1/2)Ni δi j

]
. (8)

Together with the covariances 〈δT (00)
i j δT (0β)

kl 〉 ∝ δβ0, we
readily obtain that the spin conductances vanish on average,
〈G(s)

i ( j)〉 = 0. They nevertheless fluctuate from sample
to sample or upon global homogeneous variation of the
electrochemical potentials, and we thus calculate var G(s)

i ( j).
For β �= 0 one gets (NT = N1 + N2 + N3)

var T (0β)

11 = 4N1(N1 − 1)(NT − N1)

NT (2NT − 1)(2NT − 3)
, (9a)

var T (0β)

j1 = 4N j N1(NT − N1 − 1)

NT (2NT − 1)(2NT − 3)
, ( j �= 1), (9b)

〈
T (00)

j1

2N1 − T (00)

11

〉
� N j

NT − 1
, (9c)

from which we obtain

var G(s)
1 ( j) = e2

h2

4N j N1(NT − N1 − 1)

NT (2NT − 1)(2NT − 3)
, (10a)

var G(s)
2 ( j) � var G(s)

1 ( j)

+ e2

h2

4N2
j N1(N1 − 1)

NT (2NT − 1)(2NT − 3)(NT − 1)
. (10b)

3
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To obtain equation (10b), we once again noted that
〈δT (00)

i j δT (0β)

kl 〉 ∝ δβ0, and neglected the subdominant

fluctuations of T (00)
j1 /(2N1 − T (00)

11 ). The second term in

this equation is a leading order approximation in N−1
i . One

can show, however, that it is always significantly smaller
than var G(s)

1 ( j), for any Ni , so that the small deviations
from equation (10b) possibly occurring for a small number
of channels do not alter our conclusions. We see that, while
the conductance across electrodes 2 and 3 vanishes on RMT
average, it exhibits sample-to-sample fluctuations. These
fluctuations are universal in the common mesoscopic sense
that they remain the same if the number of channels carried
by all leads is homogeneously rescaled. For a given sample,
the conductance is thus finite and can be approximated by
its typical value ≈rms G(s)

i ( j), i = 1, 2. In this paper
we used the definitions of equations (5) and (6) that spin
conductances are given by the ratio of a charge current with
a spin accumulation. Converted into more standardly used
units of spin conductance, and for a symmetric cavity with
Ni = N � 1, ∀i , equation (10a) predicts a typical spin
conductance of rms G(s)

1 � √
2/27(e/h) → √

2/27(e/4π).
Instead of measuring I2,3 for V2,3 = 0, one can

alternatively tune V2,3 such that the currents vanish. Going
back to equation (1), one obtains that the potential difference
δV2 ≡ V2(m) − V2(−m) satisfies

eδV2 = 2
∑

β �=0

T (0β)

31 μ
(β)

1

×
[

2N2 − T (00)
22 − T (00)

23

2N2 − T (00)

22 + T (00)

32

2N3 − T (00)

33 + T (00)

23

]−1

. (11)

For small numbers of channels per lead, say Ni � 5,
equation (11) gives a voltage response similar in magnitude
to the spin accumulation in reservoir 1. In 2DEG/2DHG,
a response in the range ∼0.1–1 mV thus typically requires
a spin accumulation of the order of 0.001–0.1EF, with
0.1–1% of polarized electrons, depending on the material.
This is certainly achievable via optical pumping, where
polarization of significant fractions of the electronic gas has
been demonstrated [32], and is reasonably expectable for
ferromagnetic injection, based on polarizations obtained in
bulk semiconductors [22] (though ferromagnetic injection into
a 2DEG/2DHG has yet to be demonstrated). Experimental
measurements of the Rashba parameter in InAs-based
2DEG [33] give a ratio of the spin–orbit splitting energy to
Fermi energy of the order of 5 meV/100 meV = 1/20. Given
a carrier concentration of ns = 2 × 1012 cm−2, we estimate
that the Edelstein mechanism [24] would produce polarizations
of the order of 0.1–1% in a 0.2 μm wide strip of InAs-based
2DEG carrying a current of about 2000 nA. Therefore the spin
to charge current conversion discussed in this paper should lead
to measurable charge voltage differences.

In conclusion, we have discussed how spin currents or
spin accumulations can be converted mesoscopically to charge
currents and voltages using neither ferromagnets nor external
magnetic fields. We have proposed an experimental method,
based on this spin–charge conversion, to measure the spin
conductance of mesoscopic cavities—giving the charge current

generated solely by the presence of spin–orbit interaction—
relying solely on measuring electrical signals. The spin
conductance of a mesoscopic cavity might in principle be
measured using spin polarized quantum point contacts [34].
However, the Zeeman field necessary to polarize the quantum
point contact is rather large. It might thus freeze the spin of the
electrons and reduce or even destroy spin–orbit effects inside
the cavity. The set-up we propose does not suffer from this.
We do not see any unsurmountable difficulty preventing the
experimental implementation of the ideas presented here.
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[14] Adagideli İ, Scheid M, Wimmer M, Bauer G E W and

Richter K 2007 New J. Phys. 9 382
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